Case Reports: Susceptibility-Weighted Imaging (syngo SWI) at 3T

Kate Negus; Peter Brotchie, MBBS, Ph.D.
Barwon Medical Imaging, The Geelong Hospital, Geelong, Victoria, Australia

Introduction
This is a pictorial review of susceptibility-weighted imaging (syngo SWI) using a MAGNETOM Trio system with software version syngo MR B15 and a 32-channel head coil at The Geelong Hospital, Victoria, Australia. syngo SWI is a 3D FLASH sequence that is flow compensated in slice, read and phase directions. The data received contains a combination of phase and magnitude information. The susceptibility-weighted images are produced by first filtering the phase images of unwanted field inhomogeneities and then weighting the magnitude images with this phase mask. Two maps are automatically calculated; phase mask multiplied magnitude images and SWI minIP (minimum intensity projection of 8 images on a sliding scale). In addition, the phase and magnitude images can also be produced by modifying the reconstruction tab card.

The SWI images are T2*-weighted and are enhanced by flow compensation and phase masking, so there is exquisite detail of areas of susceptibility due to venous blood, haemorrhage and iron storage. The resolution is high enough to diagnose clinically relevant lesions and the sequence short enough to include in all protocols that would benefit from this new technique, without a time penalty. Whole brain coverage of our sequence means that lesions in unexpected locations would not be missed due to lack of coverage.

Case 1: Thrombosis and Associated Venous Infarct

Patient history
A 65-year-old male presented to our emergency department with dysphagia, word-finding difficulty and right sided weakness.

Imaging findings
Non-contrast CT identified a hypodense mass lesion in the left thalamus with a hyperdense border. Contrast CT and CT venogram demonstrated a segment of non-filling likely due to thrombosis in the left internal cerebral vein with associated venous infarct in the left thalamus. MRI was obtained to confirm the vein thrombosis and extent of infarction. Initial MRI on our Philips Edge 1.5T system confirmed a non-filling section of the left internal cerebral vein in keeping with thrombosis, extending to the vein of Galen. There was an area of susceptibility artefact in the gradient echo images in the left thalamus representing haemorrhage. There were 2 small
foci of restricted diffusion in the left centrum semiovale likely related to the venous infarction, but no definite restricted diffusion involving the left thalamus or the left basal ganglia. MR spectroscopy of the basal ganglia region showed an increased lactate peak suggestive of ischaemia.

The patient was recalled to our Siemens 3T MAGNETOM Trio scanner the following day. The sequences performed included axial T2w, T1w, Diffusion-Weighted Imaging (DWI), Susceptibility-Weighted Imaging (syngo SWI) and MR venography. This imaging confirmed the left internal cerebral vein thrombosis and associated venous infarct.

Discussion

SWI nicely demonstrated the venous tributaries of the left internal cerebral vein with signal dropout due to the presence of deoxyhaemoglobin in the vessels. Signal dropout is also seen in the thrombosed internal cerebral vein and within the thalamic haemorrhage, demonstrating the high sensitivity but low specificity of this sequence.
Case 2: Amyloid Angiopathy

Patient history
An 83-year-old male presented for MRI from the memory clinic query fronto-temporal dementia versus Alzheimer’s Disease with frontal features.

Sequence details
The standard dementia protocol was performed: T1 volume, axial T2, FLAIR, syngo SWI, DWI whole brain images with PRESS 30 MR spectroscopy of the parietal grey matter.

Imaging findings
Haemosiderin staining over the cortical surface of the frontal and parietal lobes was evident on the SWI, consistent with previous subarachnoid haemorrhage, most likely secondary to amyloid angiopathy.

Discussion
The SWI demonstrated signal loss due to haemorrhage which was not appreciable on the routine imaging. Micro haemorrhages in the arterioles of the grey matter may lead to vascular dementia associated with amyloid angiopathy. syngo SWI may provide useful information in the imaging of dementia.
Case 3: Cerebral haemorrhage in case of AVM

Patient history
A 33-year-old male with a known brain arterio-venous malformation (AVM) presented to our emergency department with a history of 5 minutes of motor problems in his right hand. MRI was performed to rule out cerebral haemorrhage.

Sequence details
T1 volume, axial T2, FLAIR, field-echo whole brain images, 3D Time-of-Flight (TOF) and contrast-enhanced MR angiography and MR venography sequences were performed on our Siemens 1.5T MAGNETOM Avanto system.

Imaging findings
A collection of serpiginous flow-voids was evident within the left superior parietal lobe, similar in appearance to the patient’s previous study. However there was a region of hypointense signal present within the region of the vascular malformation that was not visible on the SWI from a previous study performed on the patient 3 months prior. This was suspicious for acute haemorrhage. The patient was recalled for SWI at 3 Tesla, so we could have a direct comparison with the previous imaging that was also performed on our 3T scanner. This demonstrated the development of a region of hypointensity situated centrally within the vascular malformation within the left parietal lobe, measuring 2.0 x 1.5 x 3.0 cm in size. On the previous imaging from 3 months prior, a small focus of hypointensity at this site was evident measuring 1 x 1 x 1 cm in diameter.

Discussion
The SWI appearance indicated the development of haemorrhage into the vascular malformation within the left parietal lobe, which had occurred since the previous study. The signal dropout on the SWI shows the margin of the haemorrhage and the associated anomalous vessels more accurately than other routine sequences.
Case 4: Traumatic haemorrhage

Patient history
48-year-old female presented to our emergency department with vomiting and headache after previously discharging herself following a diagnosis of cortical vein thrombosis.

Sequence details
Pre and post contrast T1 whole brain images, axial T2, DWI, syngo SWI whole brain images with MR venogram.

Imaging findings
syngo SWI demonstrated a number of hypointense foci within the sulci of the frontal lobes bilaterally and a number of extra-axial locations. These were associated with a number of small foci of restricted diffusion within the cerebral cortex. The history of recent head trauma, subsequently elicited from the patient, indicated that the appearance was most likely due to regions of extra-axial haemorrhage and small cortical contusions.

Discussion
SWI is more sensitive to very small areas of traumatic haemorrhage because of its higher resolution and better sensitivity to blood products than the routine sequences.

All images acquired at 3 Tesla. A, D) DWI B, E) T2w TSE 4 C, F) syngo SWI.
Case 5: Cerebral metastases in case of oesophageal adenocarcinoma

Patient history
A 48-year-old male with oesophageal adenocarcinoma presented with right retro orbital pain for 8 weeks and was scanned for query cerebral metastases.

Sequence details
Pre- and post contrast T1 volume, axial T2, FLAIR, DWI, syngo SWI whole brain images, coronal T1, fat sat T2, post contrast fat sat T1 images of orbits and paranasal sinuses.

Imaging findings
No evidence of orbital mass or mass within the paranasal sinuses was demonstrated. Numerous T2 hypointense lesions with marked signal dropout on SWI were evident throughout the left cerebral hemisphere. However, some of these were unaltered in appearance from the previous study from 2 years earlier and were consistent with cavernous haemangiomas. The others represent haemorrhagic metastases.

Discussion
The patient returned for a follow-up scan on our 1.5T MAGNETOM Avanto scanner 1 month later and standard T2* gradient echo imaging was performed. Compared to the 3T SWI, the standard gradient echo imaging at 1.5T is not as sensitive to the multiple haemorrhagic areas, failing to show some of the smaller lesions evident on the 3T SWI sequence.
Case 6: Haemorrhagic component of MCA infarction

Patient history
A 48-year-old female presented to our emergency department with sudden onset of left face, arm and leg weakness. CT brain was reported as right middle cerebellar artery infarction. MRI was performed to confirm this finding.

Sequence details
Pre- and post contrast volume T1, axial FSE T2, FLAIR, syngo SWI, DWI images of the whole brain and 3D TOF MRA circle of Willis.

Imaging findings
Abnormal signal was seen within the right caudate head and lentiform nucleus with significant susceptibility artefact within these structures that was most consistent with the presence of blood products. The pathology is contained within the middle cerebral artery distribution and appearances on syngo SWI are most consistent with a cerebral infarction with haemorrhagic transformation.

Discussion
The SWI sequence demonstrated the full extent of the haemorrhagic component of the infarction better than any of the routine sequences. The presence of haemorrhage with stroke is important to demonstrate as it changes treatment options.

Case study discussion
syngo SWI has allowed smaller susceptibility lesions to be demonstrated than previously possible, in cases of vascular malformation, tumor, stroke, trauma and dementia.
In many cases cited in the literature, SWI was the only imaging sequence to show the abnormality due to its increased sensitivity to iron content. In all 6 of our cases the SWI sequence demonstrated increased detail of the pathology compared with the routine imaging sequences. In cases 2, 4 and 5, some lesions appeared to be too small to see on other imaging sequences, indicating how the sensitivity of syngo SWI may benefit diagnosis.
The increased signal and susceptibility effects at 3T enhance the use of syngo SWI, allowing full brain coverage in a short amount of time.

References

Contact
Kate Negus
MRI Supervising Technologist
Barwon Medical Imaging
The Geelong Hospital
PO Box 281
Geelong, 3220, Victoria, Australia
Phone: +61 3 5226 7070
katen@barwonhealth.org.au

Assoc. Prof. Peter Brotchie, MBBS, Ph.D.
Director MRI
Barwon Medical Imaging
The Geelong Hospital
Geelong, 3220, Victoria, Australia
Phone: +61 3 5226 7032
peterbr@barwonhealth.org.au